$A = \{1, 2, 3\}$ and $B = \{3, 8\}$, then $(A \cup B) × (A \cap B)$ is
(b) $A \cup B = \{ 1,{\rm{ 2, 3, 8}}\} $; $A \cap B = \{ 3\} $
$(A \cup B) \times (A \cap B) = \{ (1,\,3),\,(2,3),(3,3),(8,3)\} $.
If $P=\{1,2\},$ form the set $P \times P \times P$
Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cap C)$
If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c \cup Q^c)^c =$
If $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ then $n(A \times B)$ is equal to