Gujarati
1.Units, Dimensions and Measurement
normal

A dimensionless quantity is constructed in terms of electronic charge $e$, permittivity of free space $\varepsilon_0$, Planck's constant $h$, and speed of light $c$. If the dimensionless quantity is written as $e^\alpha \varepsilon_0^\beta h^7 c^5$ and $n$ is a non-zero integer, then $(\alpha, \beta, \gamma, \delta)$ is given by

A

$(2 n,-n,-n,-n)$

B

$(n,-n,-2 n,-n)$

C

$(n,-n,-n,-2 n)$

D

$(2 n,-n,-2 n,-2 n)$

(IIT-2024)

Solution

For the quantity to be dimensionless

$e ^\alpha \varepsilon_0^\beta h ^\gamma c ^{ d }= M ^0 L ^0 T ^0 A ^0$

$\Rightarrow( AT )^\alpha\left( M ^{-1} L ^{-3} T ^4 A ^2\right)^\beta\left( ML ^2 T ^{-1}\right)^\gamma\left( LT ^{-1}\right)^\delta= A ^0 M ^0 L ^0 T ^0$

$\therefore \alpha+2 \beta=0, \alpha+4 \beta-\gamma-\delta=0,-\beta+\gamma=0 \&-3 \beta+2 \gamma+\delta=0$

$\therefore \alpha=-2 \beta, \beta=\gamma \& \gamma=\delta$

$\therefore$ Option $(A)$ satisfies the given condition

Std 11
Physics

Similar Questions