- Home
- Std 9
- Mathematics
2. Polynomials
medium
Factorise $x^{2}-7 x+12$ by using the factor theorem.
Option A
Option B
Option C
Option D
Solution
Let $p(x)=x^{2}-7 x+12$
Now, if $p(x)=(x-a)(x-b),$ we know that the constant term will be $a b$.
So, $a b=12$
So, to look for the factors of $p(x),$ we look at the factors of $12 .$
The factors of $12$ are $±1,±2,±3,±4 ,$$±6$ and $±12$
Now, $p(3)=(3)^{2}-7(3)+12$
$=9-21+12$
$=21-21$
$\therefore p(3)=0$
Now, $p(4)=(4)^{2}-7(4)+12$
$=16-28+12$
$=28-28$
$\therefore p(4)=0$
$\therefore(x-3)$ and $(x-4)$ are factors of $p(x)$.
Therefore, $x^{2}-7 x+12=(x-3)(x-4)$
Std 9
Mathematics
Similar Questions
medium