2. Polynomials
medium

Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=2 x^{2}+k x+\sqrt{2}$

A

$k =-2-\sqrt{2}$

B

$k =-2+\sqrt{2}$

C

$k =2-\sqrt{2}$

D

$k =2+\sqrt{2}$

Solution

Here $p ( x )=2 x ^{2}+ kx +\sqrt{2}$

For $x-1$ be a factor of $p(x), \,p(1)=0$.

Since,    $p (1)=2(1)^{2}+ k (1)+\sqrt{2}=2+ k +\sqrt{2}$

$\because p (1)$ must be equal to $0 .$

$\therefore  k+2+\sqrt{2} =0 $                        $\Rightarrow k =-2-\sqrt{2}$

 or   $k=-(2+\sqrt{2}) $ .

Std 9
Mathematics

Similar Questions