For the given figure, if block remains in equilibrium position then find frictional force between block and wall ........ $N$

820-1636

  • A

    $100$

  • B

    $50$

  • C

    $200$

  • D

    None

Similar Questions

A circular racetrack of radius $300\; m$ is banked at an angle of $15^o$. If the coefficient of friction between the wheels of a race-car and the road is $0.2$, what is the

$(a)$ optimum speed of the racecar to avoid wear and tear on its tyres, and

$(b)$ maximum permissible speed to avoid slipping ?

A block of mass $m$ is moving with a constant acceleration a on a rough plane. If the coefficient of friction between the block and ground is $\mu $, the power delivered by the external agent after a time $t$ from the beginning is equal to

A block of mass $m$ is placed on a surface having vertical cross section given by $y=x^2 / 4$. If coefficient of friction is $0.5$ , the maximum height above the ground at which block can be placed without slipping is:

  • [JEE MAIN 2024]

A horizontal force $12 \,N$ pushes a block weighing $1/2\, kg$ against a vertical wall.  The  coefficient of static friction between the wall and the block is $0.5$ and the coefficient of  kinetic friction is $0.35.$ Assuming that the block is not moving  initially. Which one of the following choices is correct (Take $g = 10 \,m/s^2$)

A particle of mass $m$ is at rest at the origin at time $t = 0$. It is subjected to a force $F(t) = F_0e^{-bt}$ in the $x$ -direction. Its speed $v(t)$ is depicted by which of  the  following curves ?