For the polynomial $p(x)=x^{2}-7 x+12$ $p(2)=\ldots \ldots . .$
$2$
$4$
$6$
$8$
Dividing $x^{3}+125$ by $(x-5),$ the remainder is $\ldots \ldots \ldots .$
Factorise :
$2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$
By acute division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: $x^{4}+1 ; x+1$
Evaluate $(132)^{2}$ by using suitable identities
Verify whether $2$ and $5$ are zeros of the polynomial $x^{2}-2 x-15$ or not.