10-2. Parabola, Ellipse, Hyperbola
hard

If $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ are the eccentricities of the ellipse, $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ and the hyperbola, $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ respectively and $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ is a point on the ellipse, $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ then $\mathrm{k}$ is equal to 

Solution

$e_{1}=\sqrt{1-\frac{4}{18}}=\frac{\sqrt{7}}{3}$

$\mathrm{e}_{2}=\sqrt{1+\frac{4}{9}}=\frac{\sqrt{13}}{3}$

$\because \quad\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ lies on $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k}$

$\Rightarrow \quad 15 \mathrm{e}_{1}^{2}+3 \mathrm{e}_{2}^{2}=\mathrm{k}$

$\Rightarrow \quad k=16$

Std 11
Mathematics

Similar Questions