બે અલગ ગણો ન હોય તેવા ગણ $A$ અને $B$ માટે $n(A \cup B)$ =
$n(A) + n(B)$
$n(A) + n(B) - n(A \cap B)$
$n(A) + n(B) + n(A \cap B)$
$n(A)\,n(B)$
(b) $n(A \cup B) = n(A) + n\,(B) – n(A \cap B)$.
જો $A=\{x \in R:|x|<2\}$ અને $B=\{x \in R:|x-2| \geq 3\}$ તો .. .
એક સ્કૂલમાં ત્રણ રમત રમાડવામાં આવે છે . કેટલાક વિધાર્થી બે પ્રકારની રમત રમે છે પરંતુ ત્રણેય રમત રમતા નથી . આપેલ પૈકી કઈ વેન આકૃતિઓ ઉપરોક્ત વિધાનને સમર્થન કરે છે .
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $C-A$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $A-C$
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $P(A \cap B)=P(A) \cap P(B).$
Confusing about what to choose? Our team will schedule a demo shortly.