- Home
- Std 11
- Mathematics
यदि $\frac{{{{(p + i)}^2}}}{{2p - i}} = \mu + i\lambda $, तो ${\mu ^2} + {\lambda ^2}$ का मान है
$\frac{{{{({p^2} + 1)}^2}}}{{4{p^2} - 1}}$
$\frac{{{{({p^2} - 1)}^2}}}{{4{p^2} - 1}}$
$\frac{{{{({p^2} - 1)}^2}}}{{4{p^2} + 1}}$
$\frac{{{{({p^2} + 1)}^2}}}{{4{p^2} + 1}}$
Solution
(d) $\mu + i\lambda = \frac{{{{(p + i)}^2}}}{{2p – i}} = \frac{{({p^2} – 1 + 2pi)(2p + i)}}{{(2p – i)(2p + i)}}$
$ = \frac{{2p({p^2} – 2) + i(5{p^2} – 1)}}{{4{p^2} + 1}}$
${\mu ^2} + {\lambda ^2} = \frac{{4{p^2}{{({p^2} – 2)}^2} + {{(5{p^2} – 1)}^2}}}{{{{(4{p^2} + 1)}^2}}}$
$ = \frac{{4{p^6} + 6{p^2} + 9{p^4} + 1}}{{{{(4{p^2} + 1)}^2}}}$
$ = \,\,\frac{{{p^4}(4{p^2} + 1) + 2{p^2}(4{p^2} + 1) + (4{p^2} + 1)}}{{{{(4{p^2} + 1)}^2}}}$
$ = \frac{{{p^4} + 2{p^2} + 1}}{{4{p^2} + 1}} = \frac{{{{({p^2} + 1)}^2}}}{{4{p^2} + 1}}$.