7.Binomial Theorem
hard

If ${a_1},{a_2},{a_3},{a_4}$ are the coefficients of any four consecutive terms in the expansion of ${(1 + x)^n}$, then $\frac{{{a_1}}}{{{a_1} + {a_2}}} + \frac{{{a_3}}}{{{a_3} + {a_4}}}$ =

A

$\frac{{{a_2}}}{{{a_2} + {a_3}}}$

B

$\frac{1}{2}\frac{{{a_2}}}{{({a_2} + {a_3})}}$

C

$\frac{{2{a_2}}}{{{a_2} + {a_3}}}$

D

$\frac{{2{a_3}}}{{{a_2} + {a_3}}}$

(IIT-1975)

Solution

(c) Let ${a_1},{a_2},{a_3},{a_4}$ be respectively the coefficients of ${(r + 1)^{th}},{(r + 2)^{th}}$, ${(r + 3)^{th}}$ and ${(r + 4)^{th}}$terms in the expansion of ${(1 + x)^n}$.

Then ${a_1} = {\,^n}{C_r},{a_2} = {\,^n}{C_{r + 1}},{a_3} = {\,^n}{C_{r + 2,}}{a_4} = {\,^n}{C_{r + 3}}$

Now $\frac{{{a_1}}}{{{a_1} + {a_2}}} + \frac{{{a_3}}}{{{a_3} + {a_4}}} = \frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}$$ + \frac{{^n{C_{r + 2}}}}{{^n{C_{r + 2}} + {\,^n}{C_{r + 3}}}}$

$ = \frac{{^n{C_r}}}{{^{n + 1}{C_{r + 1}}}} + \frac{{^n{C_{r + 2}}}}{{^{n + 1}{C_{r + 3}}}}$$ = \frac{{^n{C_r}}}{{\frac{{n + 1}}{{r + 1}}{\,^n}{C_r}}} + \frac{{^n{C_{r + 2}}}}{{\frac{{n + 1}}{{r + 3}}{\,^n}{C_{r + 2}}}}$
                                                

                                                 $({^n}{C_r} = \frac{n}{r}{\,^{n – 1}}{C_{r – 1}})$

= $\frac{{r + 1}}{{n + 1}} + \frac{{r + 3}}{{n + 1}} = \frac{{2(r + 2)}}{{n + 1}}$

$ = 2\frac{{^n{C_{r + 1}}}}{{^{n + 1}{C_{r + 2}}}} = 2\frac{{^n{C_{r + 1}}}}{{^n{C_{r + 1}} + {\,^n}{C_{r + 2}}}} = \frac{{2{a_2}}}{{{a_2} + {a_3}}}$

Std 11
Mathematics

Similar Questions