- Home
- Std 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $A = \left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right]$ and ${A^2} = O$, then $(a,b) = $
A
$( - 2,\, - 2)$
B
$(2,\, - 2)$
C
$( - 2,\,2)$
D
$(2,\,2)$
Solution
(a) ${A^2} = \left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}2&2\\a&b\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2a}&{4 + 2b}\\{2a + ab}&{2a + {b^2}}\end{array}} \right] = 0 = \left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right]$
$ \Rightarrow \,\,4 + 2a = 0,4 + 2b = 0,$$2a + ab = 0,$
$2a + {b^2} = 0$ must be consistent.
$ \Rightarrow $ $a = – 2$, $b = – 2$.
Std 12
Mathematics