3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right],B = \left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]$, where $i = \sqrt { - 1} $, then the correct relation is

A

$A + B = O$

B

${A^2} = {B^2}$

C

$A - B = O$

D

${A^2} + {B^2} = O$

Solution

(b) Relation ${A^2} = {B^2}$is true because ${A^2} = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&{ – 1}\end{array}} \right]$ and ${B^2} = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&{ – 1}\end{array}} \right]$have same matrices.

Std 12
Mathematics

Similar Questions