3.Trigonometrical Ratios, Functions and Identities
medium

यदि $\tan \theta + \sec \theta = {e^x},$ तो $\cos \theta $ का मान होगा

A

$\frac{{({e^x} + {e^{ - x}})}}{2}$

B

$\frac{2}{{({e^x} + {e^{ - x}})}}$

C

$\frac{{({e^x} - {e^{ - x}})}}{2}$

D

$\frac{{({e^x} - {e^{ - x}})}}{{({e^x} + {e^{ - x}})}}$

Solution

(b) $\tan \theta  + \sec \theta  = {e^x}$…..$(i)$

$\therefore \,\,\,\sec \theta  – \tan \theta  = {e^{ – x}}$…..$(ii)$

$(i)$ व $(ii)$ से,

$\,2\sec \theta  = {e^x} + {e^{ – x}}\,$

$\Rightarrow \,\cos \theta  = \frac{2}{{{e^x} + {e^{ – x}}}}.$

Std 11
Mathematics

Similar Questions