If $A = 130^\circ $ and $x = \sin A + \cos A,$ then
$x > 0$
$x < 0$
$x = 0$
$x \le 0$
(a) $x = \cos 40^\circ + \cos 130^\circ $
$= 2\cos 85^\circ \cos 45^\circ > 0$.
Prove that: $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$
If $\sin \theta + \cos \theta = m$ and $\sec \theta + {\rm{cosec}}\theta = n$, then $n(m + 1)(m – 1) = $
${\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = $
If $\tan \theta = – \frac{1}{{\sqrt {10} }}$ and $\theta $ lies in the fourth quadrant, then $\cos \theta = $
If $\tan \theta = \frac{{ – 4}}{3},$ then $\sin \theta = $
Confusing about what to choose? Our team will schedule a demo shortly.