If $A$ and $B$ are any two events, then $P(\bar A \cap B) = $
$P(\bar A)\,\,\,P(\bar B)$
$1 - P(A) - P(B)$
$P(A) + P(B) - P(A \cap B)$
$P(B) - P(A \cap B)$
(d) It is a fundamental concept.
Two dice are thrown independently. Let $A$ be the event that the number appeared on the $1^{\text {st }}$ die is less than the number appeared on the $2^{\text {nd }}$ die, $B$ be the event that the number appeared on the $1^{\text {st }}$ die is even and that on the second die is odd, and $C$ be the event that the number appeared on the $1^{\text {st }}$ die is odd and that on the $2^{\text {nd }}$ is even. Then
Let $A$ and $B$ be independent events such that $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} .$ The largest value of $\mathrm{p}$, for which $\mathrm{P}$ (exactly one of $\mathrm{A}, \mathrm{B}$ occurs $)=\frac{5}{9}$, is :
If $A$ and $B$ are two events of a random experiment, $P\,(A) = 0.25$, $P\,(B) = 0.5$ and $P\,(A \cap B) = 0.15,$ then $P\,(A \cap \bar B) = $
$P(A \cup B) = P(A \cap B)$ if and only if the relation between $P(A)$ and $P(B)$ is
If $A$ and $B$ are two independent events such that $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ Find $P$ (neither $A$ nor $B$)