यदि $A$ और $B$ दो घटनायें हैं, तब $P(\bar A \cap B) = $
$P(\bar A)\,\,\,P(\bar B)$
$1 - P(A) - P(B)$
$P(A) + P(B) - P(A \cap B)$
$P(B) - P(A \cap B)$
(d) यह आधारभूत संकल्पना है।
दो पासे स्वतंत्र रुप से फेंके जाते हैं। माना पहले पासे पर प्रकट होने वाली संख्या के दूसरे पासे पर प्रकट होने वाली संख्या से कम होने की घटना $\mathrm{A}$ है, पहले पासे पर सम संख्या तथा दसरे पासे पर विषम संख्या के प्रकट होने की घटना $\mathrm{B}$ है और पहले पासे पर विषम संख्या तथा दूसरे पासे पर सम संख्या के प्रकट होने की घटना $\mathrm{C}$ है। तो
ताश के $52$ पत्तों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छया निकाला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ $E$ और $F$ स्वतंत्र हैं?
$E :$ 'निकाला गया पत्ता एक बादशाह या एक बेगम है'
$F :$ 'निकाला गया पत्ता एक बेगम या एक गुलाम है'
यदि $P(A) = 2/3$, $P(B) = 1/2$ तथा ${\rm{ }}P(A \cup B) = 5/6$ तब घटनायें $A$ तथा $B$ हैं
माना स्वतंत्र घटनाओं $A$ तथा $B$ के लिए $P ( A )= p$ तथा $P ( B )=2 p$ हैं। तो $p$ का अधिकतम मान, जिसके लिए $P ( A$ तथा $B$ में से ठीक एक घटित होती है $)=\frac{5}{9}$ है
पूर्णांकों $1,2,3, \ldots, 50$ से एक पूर्णांक यादृच्छया चुना जाता है। चुने गए पूर्णांक के $4,6$ तथा $7$ में से कम से कम एक के गुणज होने की प्रायिकता है
Confusing about what to choose? Our team will schedule a demo shortly.