- Home
- Standard 11
- Physics
In a typical combustion engine the work done by a gas molecule is given $W =\alpha^{2} \beta e ^{\frac{-\beta x ^{2}}{ KT }}$, where $x$ is the displacement, $k$ is the Boltzmann constant and $T$ is the temperature. If $\alpha$ and $\beta$ are constants, dimensions of $\alpha$ will be
$\left[ MLT ^{-2}\right]$
$\left[ M ^{0} LT ^{0}\right]$
$\left[ M ^{2} LT ^{-2}\right]$
$\left[ MLT ^{-1}\right]$
Solution
$kT$ has dimension of energy
$\frac{\beta x ^{2}}{ kT }$ is dimensionless
$[\beta]\left[ L ^{2}\right]=\left[ ML ^{2} T ^{-2}\right]$
$[\beta]=\left[ MT ^{-2}\right]$
$\alpha^{2} \beta$ has dimensions of work
$\left[\alpha^{2}\right]\left[ MT ^{-2}\right]=\left[ ML ^{2} T ^{-2}\right]$
$[\alpha]=\left[ M ^{0} LT ^{0}\right]$
Similar Questions
Match List $I$ with List $II$ and select the correct answer using the codes given below the lists :
List $I$ | List $II$ |
$P.$ Boltzmann constant | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ Coefficient of viscosity | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ Planck constant | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ Thermal conductivity | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $