Match the following

Currents                                     $r.m.s.$ values

(1)${x_0}\sin \omega \,t$                               (i)$ x_0$

(2)${x_0}\sin \omega \,t\cos \omega \,t$                  (ii)$\frac{{{x_0}}}{{\sqrt 2 }}$

(3)${x_0}\sin \omega \,t + {x_0}\cos \omega \,t$        (iii) $\frac{{{x_0}}}{{(2\sqrt 2 )}}$

  • A

    $1. \,(i), \,2. \,(ii),\, 3.\, (iii)$

  • B

    $1. \,(ii),\, 2.\, (iii),\, 3.\, (i)$

  • C

    $1. \,(i), \,2.\, (iii), \,3.\, (ii)$

  • D

    None of these

Similar Questions

An alternating voltage is given by : $e = e_1\, \sin \omega t + e_2\, \cos \omega t$. Then  the root mean square value of voltage is given by :-

The maximum value of $a.c.$ voltage in a circuit is $707V$. Its rms value is.....$V$

A small signal voltage $V(t) = V_0\,\, sin \omega \,t$ is applied across an ideal capacitor $C$

  • [NEET 2016]

The ratio of peak value and r.m.s value of an alternating current is

If $i = {t^2}$ $0 < t < T$ then $r.m.s$. value of current is