Match the following
Currents $r.m.s.$ values
(1)${x_0}\sin \omega \,t$ (i)$ x_0$
(2)${x_0}\sin \omega \,t\cos \omega \,t$ (ii)$\frac{{{x_0}}}{{\sqrt 2 }}$
(3)${x_0}\sin \omega \,t + {x_0}\cos \omega \,t$ (iii) $\frac{{{x_0}}}{{(2\sqrt 2 )}}$
$1. \,(i), \,2. \,(ii),\, 3.\, (iii)$
$1. \,(ii),\, 2.\, (iii),\, 3.\, (i)$
$1. \,(i), \,2.\, (iii), \,3.\, (ii)$
None of these
An alternating voltage is given by : $e = e_1\, \sin \omega t + e_2\, \cos \omega t$. Then the root mean square value of voltage is given by :-
The maximum value of $a.c.$ voltage in a circuit is $707V$. Its rms value is.....$V$
A small signal voltage $V(t) = V_0\,\, sin \omega \,t$ is applied across an ideal capacitor $C$
The ratio of peak value and r.m.s value of an alternating current is
If $i = {t^2}$ $0 < t < T$ then $r.m.s$. value of current is