A ball is thrown from the location $\left(x_0, y_0\right)=(0,0)$ of a horizontal playground with an initial speed $v_0$ at an angle $\theta_0$ from the $+x$-direction. The ball is to be hit by a stone, which is thrown at the same time from the location $\left(x_1, y_1\right)=(L, 0)$. The stone is thrown at an angle $\left(180-\theta_1\right)$ from the $+x$-direction with a suitable initial speed. For a fixed $v_0$, when $\left(\theta_0, \theta_1\right)=\left(45^{\circ}, 45^{\circ}\right)$, the stone hits the ball after time $T_1$, and when $\left(\theta_0, \theta_1\right)=\left(60^{\circ}, 30^{\circ}\right)$, it hits the ball after time $T_2$. In such a case, $\left(T_1 / T_2\right)^2$ is. . . . .
Two paper screens $A$ and $B$ are separated by distance $100 \,m$. A bullet penetrates $A$ and $B$, at points $P$ and $Q$ respectively, where $Q$ is $10 \,cm$ below $P$. If bullet is travelling horizontally at the time of hitting $A$, the velocity of bullet at $A$ is nearly .......... $m / s$
A body of mass $M$ thrown horizontally with velocity $v$ from the top of the tower of height $\mathrm{H}$ touches the ground at a distance of $100 \mathrm{~m}$ from the foot of the tower. A body of mass $2 \mathrm{M}$ thrown at a velocity $\frac{v}{2}$ from the top of the tower of height $4 \mathrm{H}$ will touch the ground at a distance of. . . . ..
The initial speed of a bullet fired from a rifle is $630\, m/s$. The rifle is fired at the centre of a target $700\, m$ away at the same level as the target. How far above the center of the target (in $m$) the rifle must be aimed in order to hit the target? (Take $g=10 \;m/s^2$)
A particle is projected horizontally from a tower with velocity $10\,m / s$. Taking $g=10\,m / s ^2$. Match the following two columns at time $t=1\,s$.
Column $I$ | Column $II$ |
$(A)$ Horizontal component of velocity | $(p)$ $5$ SI unit |
$(B)$ Vertical component of velocity | $(q)$ $10$ SI unit |
$(C)$ Horizontal displacement | $(r)$ $15$ SI unit |
$(D)$ Vertical displacement | $(s)$ $20$ SI unit |