3.Trigonometrical Ratios, Functions and Identities
medium

Prove that $2 \sin ^{2}\, \frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}=10$

Option A
Option B
Option C
Option D

Solution

$L.H.S.$ $=2 \sin ^{2} \,\frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}$

$=2\left\{\sin \left(\pi-\frac{\pi}{4}\right)\right\}^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+2(2)^{2}$

$=2\left\{\sin \frac{\pi}{4}\right\}^{2}+2 \times \frac{1}{2}+8$

$=1+1+8$

$=10$

$= R . H.S$

Std 11
Mathematics

Similar Questions