- Home
- Std 10
- Mathematics
8. Introduction to Trigonometry
medium
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
Option A
Option B
Option C
Option D
Solution
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
$L.H.S.=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$
$\quad=\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A$
$\quad=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(\operatorname{cosec}^{2} A+\sec ^{2} A\right)+2 \sin A\left(\frac{1}{\sin A}\right)+2 \cos A\left(\frac{1}{\cos A}\right)$
$\quad=(1)+\left(1+\cot ^{2} A+1+\tan ^{2} A\right)+(2)+(2)$
$\quad=7+\tan ^{2} A+\cot ^{2} A$
$=R \cdot H . S.$
Std 10
Mathematics