Gujarati
Hindi
4.Average
hard

The average weight of $3 \operatorname{men} A, B$ and $C$ is $84\, kg.$ Another man $D$ joins the group and the average now becomes $80 \,kg .$ If another man $E ,$ whose weight is $3 \,kg$ more than that of $D ,$ replaces $A,$ then the average weight of $B, C, D$ and $E$ becomes $79 \,kg .$ The weight of $A$ is (in $kg$)

A

$70$

B

$72$

C

$75$

D

$80$

Solution

Average weight of $A, B$ and $C=84 kg$

On joining $D,$ average reduces to $80 kg$.

Let weight of $A , B , C , D$ and $E$ be $a, b, c, d$ and $e$ respectively

$\frac{a+b+c}{3}=84$ …….$(1)$

$\frac{a+b+c+d}{4}=80$ …….$(2)$

$a+b+c=84 \times 3$  …….$(a)$

$a+b+c+d=80 \times 4$ …….$(b)$

(b) $-(a) \Rightarrow d=80 \times 4-84 \times 3$

$=320-252=68$ years

$e=d+3=68+3=71$ years

$\frac{b+c+d+71}{4}=79$ …….$(3)$

$b+c+d+71=79 \times 4$

$b+c+d=79 \times 4-71$

$=245$ …….$(c)$

(b) $-(c) \Rightarrow a=320-245=75$ years

Std 13
Quantitative Aptitude

Similar Questions