Gujarati
Hindi
6.Interest
hard

The difference of compound interest (In ₹) on ₹ $800$ for $1$ year at $20 \%$ per annum when compounded half-yearly and quarterly is

A

$4.40$

B

Nil

C

$6.40$

D

None of these

Solution

(a) When compounded half-yearly:

Here, $P=800, R=20$ and $t=1$

$\therefore \quad CI =P\left[\left(1+\frac{R}{100 \times 2}\right)^{2 \times t}-1\right]$

$=800\left[\left(1+\frac{20}{100 \times 2}\right)^{2 \times 1}-1\right]$

$=800\left[\left(\frac{11}{10}\right)^{2}-1\right]=\frac{800 \times 21}{10 \times 10}=₹ 168$

When compounded quarterly:

$\begin{aligned} \text { Here, } P &=8000, R=20 \text { and } t=1 \\ \therefore \quad C I &=P\left[\left(1+\frac{R}{100 \times 4}\right)^{4 \times t}-1\right] \\ &=800\left[\left(1+\frac{20}{100 \times 4}\right)^{4 \times 1}-1\right] \\ &=800\left[\left(\frac{21}{20}\right)^{4}-1\right]=\frac{800 \times 34481}{20 \times 20 \times 20 \times 20} \\ &=₹ 172.40 \end{aligned}$

$\therefore \quad$ Difference $=₹(172.40-168)=₹ 4.40$

Standard 13
Quantitative Aptitude

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.