- Home
- Std 11
- Mathematics
13.Statistics
hard
The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five observations are $2, 4, 10,12,14,$ then the absolute difference of the remaining two observations is
A
$2$
B
$4$
C
$3$
D
$1$
(JEE MAIN-2020)
Solution
$\bar{x}=\frac{2+4+10+12+14+x+y}{7}=8$
$x+y=14$
$(\sigma)^{2}=\frac{\sum\left( x _{ i }\right)^{2}}{ n }-\left(\frac{\sum x _{ i }}{ n }\right)^{2}$
$16=\frac{4+16+100+144+196+x^{2}+y^{2}}{7}-8^{2}$
$16+64=\frac{460+x^{2}+y^{2}}{7}$
$560=460+x^{2}+y^{2}$
$x^{2}+y^{2}=100$ (ii)
Clearly by (i) and (ii), $|x-y|=2$
Std 11
Mathematics
Similar Questions
Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $………$.
hard