Column $-I$

    Angle of projection

    Column $-II$
  $A.$ $\theta \, = \,{45^o}$   $1.$ $\frac{{{K_h}}}{{{K_i}}} = \frac{1}{4}$
  $B.$ $\theta \, = \,{60^o}$   $2.$ $\frac{{g{T^2}}}{R} = 8$
  $C.$ $\theta \, = \,{30^o}$   $3.$ $\frac{R}{H} = 4\sqrt 3 $
  $D.$ $\theta \, = \,{\tan ^{ - 1}}\,4$   $4.$ $\frac{R}{H} = 4$

$K_i :$ initial kinetic energy

$K_h :$ kinetic energy at the highest point

  • A

    $A-1,\,\,B-2,\,\,C-3,\,\,D-4$

  • B

    $A-4,\,\,B-3,\,\,C-2,\,\,D-1$

  • C

    $A-4,\,\,B-1,\,\,C-3,\,\,D-2$

  • D

    $A-3,\,\,B-2,\,\,C-4,\,\,D-1$

Similar Questions

A projectile is thrown from a point in a horizontal plane such that the horizontal and vertical velocities are $9.8 \;ms ^{-1}$ and $19.6\; ms ^{-1}$. It will strike the plane after covering distance of ........ $m$

A projectile is fired at a speed of $100\, m/sec$ at an angle of $37^o$ above the horizontal. At the highest point, the projectile breaks into two parts of mass ratio $1:3$, the smaller coming to rest. Then the distance of heavier part from the launching point is ........... $m$.

A ball is projected with kinetic energy $E$ at an angle of ${45^o}$ to the horizontal. At the highest point during its flight, its kinetic energy will be

  • [AIEEE 2002]

A projectile can have the same range $R$ for two angles of projection. If $t_1$ and $t_2$ be the times of flights in the two cases, then the product of the two time of flights is proportional to

  • [AIIMS 2006]

A fighter plane flying horizontally at an altitude of $1.5\; km$ with speed $720\; km / h$ passes directly overhead an anti-atrcraft gun. At what angle from the vertical should the gun be fired for the shell with muzzle speed $600\; m s ^{-1}$ to hit the plane? At what minimum altitude should the pilot fly the plane to avoid being hit ? (Take $g=10 \;m s ^{-2}$ ).