A projectile is thrown from a point in a horizontal plane such that the horizontal and vertical velocities are $9.8 \;ms ^{-1}$ and $19.6\; ms ^{-1}$. It will strike the plane after covering distance of ........ $m$

  • A

    $4.9$

  • B

    $9.8$

  • C

    $19.6$

  • D

    $39.2 $

Similar Questions

A stone is projected from ground at $t = 0$. At the time of projection horizontal and vertical component of velocity are $10\, m/s$ and $20\, m/s$ respectively. Then time at which tangential and normal acceleration magnitude will be equal $(g = 10\, m/s^2)$ [neglect air friction]    ......... $\sec$

A stone is projected with a velocity $20 \sqrt{2}\,m / s$ at an angle of $45^{\circ}$ to the horizontal. The average velocity of stone during its motion from starting point to its maximum height is $..........\,m/s$ (take $g=10\,m / s ^2$ )

For a projectile, the ratio of maximum height reached to the square of flight time is ($g = 10 ms^{-2}$)

Two stones having different masses $m_1$ and $m_2$ are projected at an angle $\alpha$ and $\left(90^{\circ}-\alpha\right)$ with same speed from same point. The ratio of their maximum heights is

A projectile is thrown with a velocity of $10\,m / s$ at an angle of $60^{\circ}$ with horizontal. The interval between the moments when speed is $\sqrt{5 g}\,m / s$ is $..........\,s$ $\left(g=10\,m / s ^2\right)$.