- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
$A$ and $B$ are two square matrix such that $A^2B = BA$ and If $(AB)^{10} = A^K B^{10}$ then $k$ is
A
$10$
B
$1001$
C
$1023$
D
$1042$
Solution
$(\mathrm{AB})^{2}=(\mathrm{AB})(\mathrm{AB})=\mathrm{A}(\mathrm{BA}) \mathrm{B}=\mathrm{A}^{3} \mathrm{B}^{2}$
Now $(A B)^{3}=A B \,A \,B A\, B=A^{7} B^{3}$
so ${({\rm{AB}})^{\rm{n}}} = {({\rm{A}})^{{2^n} – 1}}{{\rm{B}}^{\rm{n}}}$
so $\mathrm{k}=2^{10}-1=1023$
Standard 12
Mathematics
Similar Questions
hard