$Assertion$ : Angle of repose is equal to the angle of limiting friction.
$Reason$ : When the body is just at the point of motion, the force of friction in this stage is called limiting friction.
If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
If the Assertion is correct but Reason is incorrect.
If both the Assertion and Reason are incorrect.
Maximum value of static friction is called
What is the maximum value of the force $F$ such that the block shown in the arrangement, does not move ........ $N$
A block of mass $2 kg$ slides down an incline plane of inclination $30^o$. The coefficient of friction between block and plane is $0.5$. The contact force between block and plank is :
A block of mass $15 \;kg$ is placed on a long trolley. The coefficient of static friction between the block and the trolley is $0.18$. The trolley accelerates from rest with $0.5 \;m s ^{-2}$ for $20 \;s$ and then moves with uniform velocity. Discuss the motion of the block as vlewed by
$(a)$ a stationary observer on the ground,
$(b)$ an observer moving with the trolley.
A block of mass $5\, kg$ is kept on a rough horizontal floor. It is given a velocity $33\, m/s$ towards right. A force of $20\sqrt {2\,} \,N$ continuously acts on the block as shown in the figure. If the coefficient of friction between block and floor is $0.5$ the velocity of block after $3\, seconds$ is ........ $m/s$ ($g = 10\, m/s^2$)