$\tan \theta=\sqrt{3},$ then $\theta=\ldots \ldots \ldots$
$30$
$45$
$60$
$90$
$\tan \theta=\sqrt{3} \cdot$ But, $\tan 60=\sqrt{3}\, \therefore \theta=60$
$(\sin \theta+\cos \theta)^{2}+(\sin \theta-\cos \theta)^{2}=\ldots \ldots \ldots \ldots$
The value of $\tan 5 \cdot \tan 25 \cdot \tan 45 \cdot \tan 65 \cdot \tan 85$ is $\ldots \ldots \ldots \ldots .$.
$\sec 55 \cdot \sin 35+\cos 35 \cdot \operatorname{cosec} 55=\ldots \ldots \ldots \ldots$
$(1-\cos \theta)(1+\cos \theta)=\ldots \ldots \ldots$
$\tan (65-\theta)-\cot (25-\theta)-\sec (55-\theta)+\operatorname{cosec}(35-\theta)=\ldots \ldots \ldots \ldots . .$ (where, $0 < \theta < 25)$
Confusing about what to choose? Our team will schedule a demo shortly.