$\sin 70=\cos \theta,$ તો $\theta=\ldots \ldots \ldots \ldots$
$70$
$90$
$20$
$30$
$\sin 70=\sin (90-20)=\cos 20 .$
But, $\sin 70=\cos \theta . $
$ \therefore \theta=20$
$\cot \theta \cdot \tan \theta=\ldots \ldots \ldots$
$5 \cos A=4 \sin A,$ તો $\tan A=\ldots \ldots \cdots \cdots$
જો $\sin A+\sin ^{2} A=1$ હોય, તો $\left(\cos ^{2} A+\cos ^{4} A\right)$ નું મૂલ્ય …………… છે.
જો $\operatorname{cosec} \theta+\cot \theta=p,$ હોય, તો સાબિત કરો કે $\cos \theta=\frac{p^{2}-1}{p^{2}+1}$
$\Delta ABC$ માં , $AC =5, BC =13, m \angle A =90,$ તો $\tan B =\ldots \ldots \ldots \ldots$
Confusing about what to choose? Our team will schedule a demo shortly.