8. Introduction to Trigonometry
easy

$\cos \theta=\frac{15}{17},$હોય તો $\operatorname{cosec} \theta+\cot \theta $ મેળવો.

A

$\frac{1}{4}$

B

$\frac{7}{17}$

C

$4$

D

$\frac{7}{8}$

Solution

$\sin ^{2} \theta=1-\cos ^{2} \theta=1-\left(\frac{15}{17}\right)^{2}=1-\frac{225}{289}=\frac{64}{289}=\left(\frac{8}{17}\right)^{2} \quad \therefore \sin \theta=\frac{8}{17}$

From this, $\operatorname{cosec} \theta=\frac{17}{8}$ and $\cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{15 / 17}{8 / 17}=\frac{15}{8}$

Now, $\operatorname{cosec} \theta+\cot \theta=\frac{17}{8}+\frac{15}{8}=\frac{32}{8}=4$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.