- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
easy
$\sec ^{2} \theta+\tan ^{2} \theta=\frac{13}{12},$ then the value of $\sec ^{4} \theta-\tan ^{4} \theta $ is .........
A
$\frac{12}{13}$
B
$\frac{13}{12}$
C
$1$
D
$\frac{1}{12}$
Solution
$\sec ^{4} \theta-\tan ^{4} \theta=\left(\sec ^{2} \theta-\tan ^{2} \theta\right)\left(\sec ^{2} \theta+\tan ^{2} \theta\right)=(1)\left(\frac{13}{12}\right)=\frac{13}{12}$
Standard 10
Mathematics