$\sin ^{2} 15+\sin ^{2} 75=\ldots \ldots \ldots \ldots$
$1$
$0$
$2$
$6$
$\sin ^{2} 15+\sin ^{2} 75=\sin ^{2} 15+\sin ^{2}(90-15)$
$=\sin ^{2} 15+\cos ^{2} 15$
$=1$
Write 'True' or 'False' and justify your answer.
$\sqrt{\left(1-\cos ^{2} \theta\right) \sec ^{2} \theta}=\tan \theta$
If $\sin A =\frac{1}{2},$ then the value of $\cot A$ is
Prove that,
$(\sin \alpha+\cos \alpha)(\tan \alpha+\cot \alpha)=\sec \alpha+\operatorname{cosec} \alpha$
$\sin ^{2} 1+\sin ^{2} 3+\sin ^{2} 87+\sin ^{2} 89=\ldots \ldots \ldots \ldots$
$8 \sin ^{2} 45-2 \tan ^{2} 60+3 \cot ^{2} 30-2 \cos ^{2} 45$
Confusing about what to choose? Our team will schedule a demo shortly.