${d \over {dx}}\left( {{1 \over {{x^4}\sec x}}} \right) = $

  • A
    ${{x\sin x + 4\cos x} \over {{x^5}}}$
  • B
    ${{ - (x\sin x + 4\cos x)} \over {{x^5}}}$
  • C
    ${{4\cos x - x\sin x} \over {{x^5}}}$
  • D
    None of these

Similar Questions

The resultant of $A$ and $B$ makes an angle $\alpha$ with $A$ and $\beta$ with $B$, then

If the vectors $\vec P = a\hat i + a\hat j + 3\hat k$ and $\vec Q = a\hat i - 2\hat j - \hat k$ are perpendicular to each other then the positive value of $a$ is

Given $A =\hat{ i }+\hat{ j }+\hat{ k }$ and $B =-\hat{ i }-\hat{ j }-\hat{ k }$, then $( A - B )$ will make angle with $A$

If $\vec{A}+\vec{B}+\vec{C}=0$ then $\vec{A} \times \vec{B}$ is ............