$Assertion\,(A):$ A charge $q$ is placed on a height $h / 4$ above the centre of a square of side b. The flux associated with the square is independent of side length.
$Reason\,(R):$ Gauss's law is independent of size of the Gaussian surface.
If both Assertion and Reason are true and Reason is correct explanation of Assertion.
If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
If Assertion is true but Reason is false.
If both Assertion and Reason are false.
Let the electrostatic field $E$ at distance $r$ from a point charge $q$ not be an inverse square but instead an inverse cubic, e.g. $E =k \cdot \frac{q}{r^{3}} \hat{ r }$, here $k$ is a constant.
Consider the following two statements:
$(I)$ Flux through a spherical surface enclosing the charge is $\phi=q_{\text {enclosed }} / \varepsilon_{0}$.
$(II)$ A charge placed inside uniformly charged shell will experience a force.
Which of the above statements are valid?
The figure shows some of the electric field lines corresponding to an electric field. The figure suggests
If $\oint_s \vec{E} \cdot \overrightarrow{d S}=0$ over a surface, then:
An infinitely long thin non-conducting wire is parallel to the $z$-axis and carries a uniform line charge density $\lambda$. It pierces a thin non-conducting spherical shell of radius $R$ in such a way that the arc $PQ$ subtends an angle $120^{\circ}$ at the centre $O$ of the spherical shell, as shown in the figure. The permittivity of free space is $\epsilon_0$. Which of the following statements is (are) true?
$(A)$ The electric flux through the shell is $\sqrt{3} R \lambda / \epsilon_0$
$(B)$ The z-component of the electric field is zero at all the points on the surface of the shell
$(C)$ The electric flux through the shell is $\sqrt{2} R \lambda / \epsilon_0$
$(D)$ The electric field is normal to the surface of the shell at all points
Why do electric field lines not form closed loop ?