- Home
- Standard 11
- Physics
$\mathrm{C}_{\mathrm{v}}$ and $\mathrm{C}_{\mathrm{p}}$ denote the molar specific heat capacities of a gas at constant volume and constant pressure, respectively. Then
$(A)$ $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}$ is larger for a diatomic ideal gas than for a monoatomic ideal gas
$(B)$ $\mathrm{C}_{\mathrm{p}}+\mathrm{C}_{\mathrm{v}}$ is larger for a diatomic ideal gas than for a monoatomic ideal gas
$(C)$ $\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$ is larger for a diatomic ideal gas than for a monoatomic ideal gas
$(D)$ $\mathrm{C}_{\mathrm{p}} \cdot \mathrm{C}_v$ is larger for a diatomic ideal gas than for a monoatomic ideal gas
$(B,D)$
$(B,A)$
$(C,D)$
$(A,C)$
Solution
For Monoatomic gas
$C _{ v }=\frac{3}{2} R , C _{ p }=\frac{5}{2} R$
For diatomic gas
$C _{ V }=\frac{5}{2} RC _{ p }=\frac{7}{5} R$