- Home
- Standard 12
- Mathematics
$\cos \theta \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ - \sin \theta }&{\cos \theta }\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}{\sin \theta }&{ - \cos \theta }\\{\cos \theta }&{\sin \theta }\end{array}} \right] = $
$\left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$
Solution
(d) $\cos \theta \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ – \sin \theta }&{\cos \theta }\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}{\sin \theta }&{ – \cos \theta }\\{\cos \theta }&{\sin \theta }\end{array}} \right]$
=$\left[ {\begin{array}{*{20}{c}}{{{\cos }^2}\theta + {{\sin }^2}\theta }&0\\0&{{{\cos }^2}\theta + {{\sin }^2}\theta }\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$.