3 and 4 .Determinants and Matrices
easy

$\cos \theta \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ - \sin \theta }&{\cos \theta }\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}{\sin \theta }&{ - \cos \theta }\\{\cos \theta }&{\sin \theta }\end{array}} \right] = $

A

$\left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$

Solution

(d) $\cos \theta \left[ {\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }\\{ – \sin \theta }&{\cos \theta }\end{array}} \right] + \sin \theta \left[ {\begin{array}{*{20}{c}}{\sin \theta }&{ – \cos \theta }\\{\cos \theta }&{\sin \theta }\end{array}} \right]$

=$\left[ {\begin{array}{*{20}{c}}{{{\cos }^2}\theta + {{\sin }^2}\theta }&0\\0&{{{\cos }^2}\theta + {{\sin }^2}\theta }\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.