3 and 4 .Determinants and Matrices
easy

$\left[ {\begin{array}{*{20}{c}}7&1&2\\9&2&1\end{array}} \right]\,\left[ \begin{array}{l}3\\4\\5\end{array} \right] + 2\left[ \begin{array}{l}4\\2\end{array} \right]$ is equal to

A

$\left[ \begin{array}{l}43\\44\end{array} \right]$

B

$\left[ \begin{array}{l}43\\45\end{array} \right]$

C

$\left[ \begin{array}{l}45\\44\end{array} \right]$

D

$\left[ \begin{array}{l}44\\45\end{array} \right]$

Solution

(a) $\left[ {\begin{array}{*{20}{c}}7&1&2\\9&2&1\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}3\\4\\5\end{array}} \right]\, = \,\,\left[ {\begin{array}{*{20}{c}}{35}\\{40}\end{array}} \right]$;

$\therefore$ $\left[ {\begin{array}{*{20}{c}}{35}\\{40}\end{array}} \right]\, + \,\left[ {\begin{array}{*{20}{c}}8\\4\end{array}} \right]\, = \,\left[ {\begin{array}{*{20}{c}}{43}\\{44}\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.