- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
$P$ is an orthogonal matrix and $A$ is a periodic matrix with period $4$ and $Q = PAP^T$ then $X = P^TQ^{2005}P$ will be equal to
A
$A$
B
$A^2$
C
$A^3$
D
$A^4$
Solution
$X = P^T[(PAP^T)(PAP^T)………(PAP^T)$ $P = A^{2005} = A^{2004}$ .$A = A$ Ans. Note :If $k$ is the period of $A ⇒ A^{nk+1} = A$ for $n \in I$
Standard 12
Mathematics