$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:
$A$: standing on the horizontal surface
$B$: standing on the block According to the observer $A$
the kinetic energy of the block is converted into the potential energy of the spring
the mechanical energy of the spring-mass system is conserved
the block loses its kinetic energy because of the negative work done by the conservative force of spring
all the above
The pointer reading v/s load graph for a spring balance is as given in the figure. The spring constant is ........ $ kg/cm$
Whether the spring force is conservative or non-conservative ?
This question has Statement $1$ and Statement $2$. Of the four choices given after the Statements, choose the one that best describes the two Statements.
If two springs $S_1$ and $S_2$ of force constants $k_1$ and $k_2$, respectively, are stretched by the same force, it is found that more work is done on spring $S_1$ than on spring $S_2$.
STATEMENT 1 : If stretched by the same amount work
done on $S_1$, Work done on $S_1$ is more than $S_2$
STATEMENT2: $k_1 < k_2$
Two particles with mass $m_1$ = $16\ kg$ and $m_2$ = $2\ kg$ slide as unit with a common velocity of $12\ ms^{-1}$ on a level frictionless surface. Between them is a compressed massless spring with spring constant $k$ = $100\ Nm^{-1}$ . The spring, originally compressed by $25\ cm$ , is suddenly released, sending the two masses, which are connected to the spring, flying apart from each other. The orientation of the spring w.r.t. the initial velocity is shown in diagram. What is the relative velocity of separation in $ms^{-1}$ , after the particles lose contact? ................$m/s$
A spring when stretched by $2 \,mm$ its potential energy becomes $4 \,J$. If it is stretched by $10 \,mm$, its potential energy is equal to