$A$ block of mass $m$ starts from rest and slides down $a$ frictionless semi-circular track from $a$ height $h$ as shown. When it reaches the lowest point of the track, it collides with a stationary piece of putty also having mass $m$. If the block and the putty stick together and continue to slide, the maximum height that the block-putty system could reach is:

37-657

  • A

    $h/4$

  • B

    $h/2$

  • C

    $h$

  • D

    independent of $h$

Similar Questions

A ball moving with a velocity of $6\, m/s$ strikes an identical stationary ball. After collision each ball moves at an angle of $30^o$ with the original line of motion. What are the speeds of the balls after the collision ?

A particle of mass $m$ with initial kinetics energy $K$ approaches the origin from $x =+\infty$. Assume that a conservative force acts on it and its potential energy $V ( x )$ is given by $V ( x )=\frac{ K }{\exp \left(3 x / x _0\right)+\exp \left(-3 x / x _0\right)}$ where, $x_0=1 m$. The speed of the particle at $x =0$ is

  • [KVPY 2021]

A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. The final velocity of the wedge $v_2$ is

 

Write the equation of total mechanical energy of a body having mass $m$ and stationary at height $H$.

Given in Figures are examples of some potential energy functions in one dimension. The total energy of the particle is indicated by a cross on the ordinate axis. In each case, specify the regions, if any, in which the particle cannot be found for the given energy. Also, indicate the minimum total energy the particle must have in each case. Think of simple physical contexts for which these potential energy shapes are relevant.