$A$ projectile of mass $"m"$ is projected from ground with a speed of $50 \,m/s$ at an angle of $53^o$ with the horizontal. It breaks up into two equal parts at the highest point of the trajectory. One particle coming to rest immediately after the explosion. The distance between the pieces of the projectile when they reach the ground are:

  • A

    $240$

  • B

    $360$

  • C

    $120$

  • D

    none

Similar Questions

A mass $M$ moving with a certain speed $V$ collides elastically with another stationary mass $m$. After the collision, the masses $M$ and $m$ move with speeds $V^{\prime}$ and $v$, respectively. All motion is in one dimension. Then,

  • [KVPY 2019]

A projectile is moving at $20\,m/sec$ at its highest point where it breaks into two equal parts due to an internal explosion. One part moves vertically up at $30\,m/sec$ . Then the other part will move at ............. $\mathrm{m}/ \mathrm{s}$

A bullet weighing $10 \,g$ and moving with a velocity $300 \,m / s$ strikes a $5 \,kg$ block of ice and drop dead. The ice block is kept on smooth surface. The speed of the block after the collision is ........ $cm / s$

$A$ $4$ -kilogram disk slides over level ice toward the east at a velocity of $1$ meter per second, as shown. The disk strikes a post and rebounds toward the north at the same speed. The change in the magnitude of the eastward component of the momentum of the disk is ............. $\mathrm{kg}$ $ \cdot $ $\mathrm{m}/ \mathrm{s}$ 

An isolated rail car of mass $M$ is moving along a straight, frictionless track at an initial speed $v_0$. The car is passing under a bridge when $a$ crate filled with $N$ bowling balls, each of mass $m$, is dropped from the bridge into the bed of the rail car. The crate splits open and the bowling balls bounce around inside the rail car, but none of them fall out. Is the momentum of the rail car $+$ bowling balls system conserved in this collision?