$A$ ball of mass $m$ is attached to the lower end of light vertical spring of force constant $k$. The upper end of the spring is fixed. The ball is released from rest with the spring at its normal (unstretched) length, comes to rest again after descending through a distance $x.$
The ball will have an upward acceleration equal to $g$ at its lowermost position.
$x = 2 mg/k$
The ball will have no acceleration at the position where it has descended through $x/2.$
All of the above
Two particles with mass $m_1$ = $16\ kg$ and $m_2$ = $2\ kg$ slide as unit with a common velocity of $12\ ms^{-1}$ on a level frictionless surface. Between them is a compressed massless spring with spring constant $k$ = $100\ Nm^{-1}$ . The spring, originally compressed by $25\ cm$ , is suddenly released, sending the two masses, which are connected to the spring, flying apart from each other. The orientation of the spring w.r.t. the initial velocity is shown in diagram. What is the relative velocity of separation in $ms^{-1}$ , after the particles lose contact? ................$m/s$
In a spring gun having spring constant $100\, {N} / {m}$ a small ball $'B'$ of mass $100\, {g}$ is put in its barrel (as shown in figure) by compressing the spring through $0.05\, {m}$. There should be a box placed at a distance $'d'$ on the ground so that the ball falls in it. If the ball leaves the gun horizontally at a height of $2\, {m}$ above the ground. The value of $d$ is $....{m} .$ $\left(g=10\, {m} / {s}^{2}\right)$
$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:
$A$: standing on the horizontal surface
$B$: standing on the block To an observer
$A$, the work done by the normal reaction $N$ between the block and the spring on the block is
A mass of $0.5\,kg$ moving with a speed of $1.5 \,m/s$ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $k = 50\;N/m$. The maximum compression of the spring would be ............. $\mathrm{m}$
A container of mass $m$ is pulled by a constant force in which a second block of same mass $m$ is placed connected to the wall by a mass-less spring of constant $k$. Initially the spring is in its natural length. Velocity of the container at the instant compression in spring is maximum for the first time :-