Gujarati
Hindi
2.Motion in Straight Line
normal

$A$ hinged construction consists of three rhombs with the ratio of sides $5:3:2$. Vertex $A_3$ moves in the horizontal direction at a velocity $v$. Velocity of $A_2$ is ....... $V$.

A

$2.5$

B

$1.5$

C

$\frac{2}{3}$

D

$0.8$

Solution

$1)$ We know, Diagonal of rhombus is proportional to its side.

$\Rightarrow$ Cor-responding ratio of diagonals $=5: 3: 2$

Let them be $5 y, 3 y, \&$ 2y respectively as shown in figure.

$2)$ Now,

$V_{A_{3}}-V_{A_{o}}=\frac{d\left(A_{o} A_{3}\right)}{d t}$

$=>V-0=\frac{d(10 y)}{d t}$

$=>V-0=10 \frac{d y}{d t}….(1)$

$3)$ Also, $V_{A_{3}}-V_{A_{2}}=\frac{d\left(A_{3} A_{2}\right)}{d t}$

$=>V-V_{A_{2}}=\frac{d(2 y)}{d t}$

$=>V-V_{A_{2}}=2 \frac{d(y)}{d t}….(2)$

Elimination $\frac{d y}{d t}$ from above equations, we get

$V_{A_{2}}=0.8 \mathrm{V}$

Hence, Velocity at $A_{2}$ is $0.8 V$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.