- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
hard
$A$ thin rod of length $L$ is placed vertically on a frictionless horizontal floor and released with a negligible push to allow it to fall. At any moment, the rod makes an angle $\theta$ with the vertical. If the center of mass has acceleration $= A$, and the rod an angular acceleration $= \alpha$ at initial moment, then
A
$A= (L\alpha ).sin\theta$
B
$A/2 = (L\alpha ).sin\theta$
C
$2A = (L\alpha ).sin\theta$
D
$A = L\alpha$
Solution

$\therefore a_{c m}=A=\frac{L}{2} \alpha \sin \theta$
$\therefore \mathrm{A}=\frac{\mathrm{L}}{2} \alpha \sin \theta$
$\therefore 2 \mathrm{A}=\mathrm{L} \alpha \sin \theta$
Standard 11
Physics
Similar Questions
hard