A $43\, m$ long rope of mass $5.0\, kg$ joins two rock climbers. One climber strikes the  rope and the second one feels the effect $1.4\, s$ later. What is the tension in the rope .... $N$ ?

  • A

    $110$

  • B

    $301$

  • C

    $215$

  • D

    $154$

Similar Questions

A string is producing transverse vibration whose equation is $y = 0.021\;\sin (x + 30t)$, Where $x$ and $y$ are in meters and $t$ is in seconds. If the linear density of the string is $1.3 \times {10^{ - 4}}\,kg/m,$ then the tension in the string in $N$ will be

A vibrating string of certain length $l$ under a tension $T$ reasonates with a mode corresponding to the first overtone (third harmonic) of an air column of length $75$ $cm$ inside a tube closed at one end. The string also generates $4$ beats per second when excited along with a tuning fork of frequency $n$. Now when the tension of the string is slightly increased the number of beats reduces to $2$ per second. Assuming the velocity of sound in air to be $340$ $m/s$, the frequency $n$ of the tuning fork in $Hz $ is

If you set up the seventh harmonic on a string fixed at both ends, how many nodes and antinodes are set up in it

A wave travelling along positive $x-$ axis is given by $y = A\sin (\omega \,t - kx)$. If it is reflected from rigid boundary such that $80\%$ amplitude is reflected, then equation of reflected wave is

A metallic wire of length $L$ is fixed between two rigid supports. If the wire is cooled through a temperature difference $\Delta T$ ($Y$ = young’s modulus, $\rho$ = density, $\alpha$ = coefficient of linear expansion) then the frequency of transverse vibration is proportional to :