A ball of mass $m$  is dropped from a heigh $h$  on a platform fixed at the top of a vertical spring, as shown in figure. The platform is depressed by a distance $x.$  Then the spring constant is

829-397

  • A

    $\frac{{mg}}{{(h + x)}}$

  • B

    $\frac{{mg}}{{(h + 2x)}}$

  • C

    $\frac{{2mg(h + x)}}{{{x^2}}}$

  • D

    $\frac{{mg}}{{(2h + x)}}$

Similar Questions

The potential energy of a body of mass $m$ is:
                      $U = ax + by$
Where $x$ and $y$ are position co-ordinates of the particle. The acceleration of the particle is

A disc of mass $M$ and radius $R$ rolls on a horizontal surface and then rolls up an inclined plane as shown in the figure. If the velocity of the disc is $v$, the height to which the disc will rise will be

The mass of the bob of a simple pendulum of length $L$ is $m$. If the bob is left from its horizontal position then the speed of the bob and the tension in the thread in the lowest position of the bob will be respectively

The bob of a pendulum of length $l$ is pulled aside from its equilibrium position through an angle $\theta $ and then released. The bob will then pass through its equilibrium position with speed $v$ , where $v$ equals

A mass $m$ moves with a velocity $v$ and collides inelastically with another identical mass initially at rest. After collision the first mass moves with velocity $\frac{v}{\sqrt 3}$ in a  direction perpendicular to its initial direction of motion. The speed of second mass after collision is