A batsman hits a sixer and the ball touches the ground outside the cricket ground. Which of the following graph describes the variation of the cricket ball's vertical velocity $v$ with time between the time ${t_1}$ as it hits the bat and time $t_2$ when it touches the ground
In the figure shown the potential energy $(U)$ of a particle is plotted against its position $'x'$ from origin. The particle at
A ball is dropped from height $h$ on a plane. If the coefficient of restitution of the plane is $e$ and if ball hits ground two times, the height upto which it reaches after two jumps, will be
$A$ particle of mass $m$ is released from $a$ height $H$ on $a$ smooth curved surface which ends into a vertical loop of radius $R$, as shown The minimum value of $H$ required so that the particle makes a complete vertical circle is given by
A ball $P$ collides with another identical ball $Q$ at rest. For what value of coefficient of restitution $e$, the velocity of ball $Q$ become two times that of ball $P$ after collision
$A$ ball is dropped from $a$ height $h$. As it bounces off the floor, its speed is $80$ percent of what it was just before it hit the floor. The ball will then rise to $a$ height of most nearly .............. $\mathrm{h}$