A block $C$ of mass $m$ is moving with velocity $v_0$ and collides elastically with block $A$ of mass $m$ which connected to another block $B$ of mass $2\,m$ through a spring of spring constant $k$. What is $k$ if $x_0$ is the compression of spring when velocity of $A$ and $B$ is same?
$\frac {mv_0^2}{x_0^2}$
$\frac {mv_0^2}{2x_0^2}$
$\frac {3}{2} \frac {mv_0^2}{x_0^2}$
$\frac {2}{3} \frac {mv_0^2}{x_0^2}$
Two springs have their force constant as ${k_1}$ and ${k_2}({k_1} > {k_2})$. When they are stretched by the same force
In the diagram shown, no friction at any contact surface. Initially, the spring has no deformation. What will be the maximum deformation in the spring? Consider all the strings to be sufficiency large. Consider the spring constant to be $K$.
Two blocks of mass $2\ kg$ and $1\ kg$ are connected by an ideal spring on a rough surface. The spring in unstreched. Spring constant is $8\ N/m$ . Coefficient of friction is $μ = 0.8$ . Now block $2\ kg$ is imparted a velocity $u$ towards $1\ kg$ block. Find the maximum value of velocity $'u'$ of block $2\ kg$ such that block of $1\ kg$ mass never move is
A container of mass $m$ is pulled by a constant force in which a second block of same mass $m$ is placed connected to the wall by a mass-less spring of constant $k$. Initially the spring is in its natural length. Velocity of the container at the instant compression in spring is maximum for the first time :-
A ball of mass $2 \,m$ and a system of two balls with equal masses $m$ connected by a massless spring, are placed on a smooth horizontal surface (see figure below). Initially, the ball of mass $2 \,m$ moves along the line passing through the centres of all the balls and the spring, whereas the system of two balls is at rest. Assuming that the collision between the individual balls is perfectly elastic, the ratio of vibrational energy stored in the system of two connected balls to the initial kinetic energy of the ball of mass $2 \,m$ is