A block $C$ of mass $m$ is moving with velocity $v_0$ and collides elastically with block $A$ of mass $m$ which connected to another block $B$ of mass $2\,m$ through a spring of spring constant $k$. What is $k$ if $x_0$ is the compression of spring when velocity of $A$ and $B$ is same?

815-566

  • A

    $\frac {mv_0^2}{x_0^2}$

  • B

    $\frac {mv_0^2}{2x_0^2}$

  • C

    $\frac {3}{2} \frac {mv_0^2}{x_0^2}$

  • D

    $\frac {2}{3} \frac {mv_0^2}{x_0^2}$

Similar Questions

$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:

$A$: standing on the horizontal surface

$B$: standing on the block According to the observer $A$

A smooth semicircular tube $AB$ of radius $R$ is fixed in a verticle plane and contain a heavy flexible chain of length $\pi R$ . Find the velocity $v$ with which it will emerge from the open end $'B'$ of' tube, when slightly displaced

A ball is dropped from a height of $80\,m$ on a surface which is at rest. Find the height attainded by ball after $2^{nd}$ collision if coefficient of restitution $e = 0.5$ ............ $\mathrm{m}$

A massless platform is kept on a light elastic spring as shown in fig. When a sand particle of mass $0.1\; kg$ is dropped on the pan from a height of $0.24 \;m$, the particle strikes the pan and spring is compressed by $0.01\; m$.

From what height should the particle be dropped to cause a compression of $0.04\; m$.

A ring of mass $m$ is attached to a horizontal spring of spring constant $k$ and natural length $l_0$ . Other end of spring is fixed and ring can slide on a smooth horizontal rod as shown. Now the ring is shifted to position $B$ and released, speed of ring when spring attains it's natural length is