A block of ice at $-20\,^oC$ having a mass of $2\, kg$ is added to a $3\, kg$ water at $15\,^oC$. Neglecting heat losses and the heat capacity of the container
The final temperature will be $0\,^oC$.
Ice will completely melt
Water will partially freeze
Final temperature will be more than $0\,^oC$
Heat is being supplied at a constant rate to the sphere of ice which is melting at the rate of $0.1 \,gm / s$. It melts completely in $100 \,s$. The rate of rise of temperature thereafter will be ............ $^{\circ} C / s$
In an industrial process $10\, kg$ of water per hour is to be heated from $20°C$ to $80°C$. To do this steam at $150°C$ is passed from a boiler into a copper coil immersed in water. The steam condenses in the coil and is returned to the boiler as water at $90°C.$ how many $kg$ of steam is required per hour. $($Specific heat of steam $= 1$ $calorie \,per\, gm°C,$ Latent heat of vaporisation $= 540 \,cal/gm)$
Ice in a freezer is at $-7^{\circ} C .100 \,g$ of this ice is mixed with $200 \,g$ of water at $15^{\circ} C$. Take the freezing temperature of water to be $0^{\circ} C$, the specific heat of ice equal to $2.2 \,J / g { }^{\circ} C$, specific heat of water equal to $4.2 \,J / g ^{\circ} C$ and the latent heat of ice equal to $335 \,J / g$. Assuming no loss of heat to the environment, the mass of ice in the final mixture is closest to .......... $g$
A drilling machine of $10\,KW$ power is used to drill a bore in a small aluminium block of mass $8\,kg.$ If $50\%$ of power is used up in heating the machine itself or lost to the surroundings then ........ $^oC$ is the rise in temperature of the block in $2.5\,minutes$
[specific heat of aluminium $= 0.91\,J/g\,\,^oc$ ]
$10 \,\,gm$ of ice at $0^o C$ is kept in a calorimeter of water equivalent $10 \,\,gm$. ....... $cal$ heat should be supplied to the apparatus to evaporate the water thus formed? (Neglect loss of heat)